Ayuda
Ir al contenido

Dialnet


Geometrical properties of the space of idempotent probability measures

    1. [1] Tashkent Institute of Irrigation and Agricultural Mechanization Engineers
  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 22, Nº. 2, 2021, págs. 399-415
  • Idioma: inglés
  • Enlaces
  • Resumen
    • Although traditional and idempotent mathematics are "parallel'', by an application of the category theory we show that objects obtained the similar rules over traditional and idempotent mathematics must not be "parallel''. At first we establish for a compact metric space X the spaces P(X) of probability measures and I(X) idempotent probability measures are homeomorphic ("parallelism''). Then we construct an example which shows that the constructions P and I form distinguished functors from each other ("parallelism'' negation). Further for a compact Hausdorff space X we establish that the hereditary normality of I3(X)\ X implies the metrizability of X.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno