Colombia
Turquía
Estudiamos el modelo de regresión lineal múltiple bajo errores aleatorios no distribuidos normalmente considerando la familia de distribuciones hiperbólicas secantes generalizadas. Derivamos los estimadores de los parámetros del modelo utilizando la metodología modificada de máxima verosimilitud y exploramos las propiedades de los estimadores modificados de máxima verosimilitud así obtenidos. Mostramos que los estimadores propuestos son más eficientes y robustos que los estimadores de mínimos cuadrados comúnmente utilizados. También desarrollamos la prueba relevante de los procedimientos de hipótesis y comparamos el rendimiento de tales pruebas con las pruebas clásicas que se basan en el enfoque de mínimos cuadrados.
We study multiple linear regression model under non-normally distributed random error by considering the family of generalized secant hyperbolic distributions. We derive the estimators of model parameters by usingmodified maximum likelihood methodology and explore the properties of the modified maximum likelihood estimators so obtained. We show that the proposed estimators are more efficient and robust than the commonly used least square estimators. We also develop the relevant test of hypothesis procedures and compared the performance of such tests vis-a-vis the classical tests that are based upon the least square approach.
© 2001-2025 Fundación Dialnet · Todos los derechos reservados