Using ideas related to Dowker duality, we prove that the Rips complex at scale r is homotopy equivalent to the nerve of a cover consisting of sets of prescribed diameter. We then develop a functorial version of the Nerve theorem coupled with Dowker duality, which is presented as a Functorial Dowker-Nerve Diagram. These results are incorporated into a systematic theory of filtrations arising from covers. As a result, we provide a general framework for reconstruction of spaces by Rips complexes, a short proof of the reconstruction result of Hausmann, and completely classify reconstruction scales for metric graphs. Furthermore, we introduce a new extraction method for homology of a space based on nested Rips complexes at a single scale, which requires no conditions on neighboring scales nor the Euclidean structure of the ambient space.
© 2001-2024 Fundación Dialnet · Todos los derechos reservados