Juan Pablo Betancur Rengifo, Juan Pablo Restrepo Uribe, Estefanía Pérez Giraldo, Andrés Orozco Duque
La deglución es un acto de alta complejidad neuromuscular debido a que intervienen más de 30 pares musculares y 5 pares craneales en un periodo corto de tiempo. Esta se divide en 4 etapas: pre oral, oral, orofaríngea y esofágica, una alteración en el desarrollo normal de alguna de estas fases puede desarrollar un síntoma secundario a enfermedades neuromusculares y neurogénicas que se conoce como disfagia, esta puede traer consigo muchas dificultades para quien la padece, entre esta neumonía bronquial, desnutrición, deshidratación o incluso la muerte por asfixia. La identificación de características que ayuden a reconocer dicho síntoma, además de describir correctamente el proceso deglutorio, es de gran importancia ya que los métodos existentes son invasivos. La auscultación cervical es una técnica mediante la cual se puede obtener información del cierre glótico en el proceso deglutorio por medio de señales de audio, y que puede ser analizada de manera off line. El objetivo de este estudio es evaluar diferentes métodos de caracterización de señales de auscultación cervical y desarrollar un modelo de aprendizaje automático con sonidos de eventos deglutorios segmentados de forma manual para clasificar entre sujetos de control y pacientes con disfagia orofaríngea. Los resultados mostraron, con una exactitud máxima de 75 %, que por medio de señales de auscultación cervical es posible identificar sujetos con disfagia, de igual manera se logró identificar que la potencia media de los segmentos deglutorios fue la característica con mejor rendimiento (curva ROC) y una distribución diferente entre clases según la prueba de U-Mann-Whitney, para discriminar entre sanos y pacientes en diferentes actividades deglutorias.
Swallowing is an act of high neuromuscular complexity due to the involvement of more than 30 muscle pairs and 5 cranial pairs that occurs in a short period of time. This activity is divided into 4 stages: pre-oral, oral, oropharyngeal and esophageal, an alteration in the normal development of this process can develop a symptom secondary to neuromuscular and neurogenic diseases that is known as dysphagia. Dysphagia can bring many difficulties for those who suffer from it including bronchial pneumonia, malnutrition, dehydration or even death by asphyxia. The identification of characteristics that help recognize this symptom, in addition to correctly describing the swallowing process is of great importance since the existing methods are invasive. Cervical auscultation is a technique by which information about the gothic closure can be obtained in the swallowing process using audio signals, and which can be analyzed offline. The aim of this study is to evaluate different methods of characterization of cervical auscultation signals and develop a machine learning model with manually segmented swallowing event sounds to classify between control subjects and patients with oropharyngeal dysphagia. The results showed, with a maximum accuracy of 75% that by means of signs is cervical auscultation it is possible to identify dysphageal subjects. In the same way it was possible to identify that the average potency of the swallowing segments was the feature with the best score (ROC curve) and that exists a different distribution between classes in this characteristic according to the U-Mann-whitney test to discriminate between healthy and pathologic subjects during different swallowing activities.
© 2001-2024 Fundación Dialnet · Todos los derechos reservados