Ayuda
Ir al contenido

Dialnet


Estimating Latent-Variable Panel Data Models Using Parameter-Expanded SEM Methods

  • Siqi Wei [1]
    1. [1] Centro de Estudios Monetarios y Financieros

      Centro de Estudios Monetarios y Financieros

      Madrid, España

  • Localización: Documentos de Trabajo ( CEMFI ), Nº. 6 (CEMFI Working Paper No. 2206, July 2022), 2022
  • Idioma: inglés
  • Enlaces
  • Resumen
    • The Expectation-Maximization (EM) algorithm is a popular tool for estimating models with latent variables. In complex models, simulated versions such as stochastic EM, are often implemented to overcome the difficulties in computing expectations analytically. A drawback of the EM algorithm and its variants is the slow convergence in some cases, especially when the models contain high-dimensional latent variables. Liu et al., 1998 proposed a parameter-expanded algorithm (PX-EM) to speed up convergence. This paper explores the potential of parameter expansion ideas for estimating nonlinear panel models using the stochastic EM algorithm. We develop PX-SEM methods for two types of nonlinear panel data models: 1) binary choice models with individual effects and persistent shocks, and 2) persistent-transitory dynamic quantile processes. We find that PX-SEM can greatly speed up convergence especially when the initial guess is relatively far away from true values.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno