México
Tomando como punto de partida el ejemplificar y reconocer los impactos, riesgos y daños causados por algunos sistemas de inteligencia artificial, y bajo el argumento de que la ética de la inteligencia artificial y su marco jurídico actual son insuficientes, el primer objetivo de este trabajo es analizar los modelos y prácticas evaluativas de los impactos algorítmicos para estimar cuáles son los más deseables. Como segundo objetivo se busca mostrar qué elementos deben poseer las evaluaciones de impacto algorítmico. La base teórica para el análisis de modelos, tomada de Hacker (2018), parte de mostrar la discriminación por falta de garantías para que los datos de entrada sean representativos, completos y depurados de sesgos, en particular del sesgo histórico proveniente de representaciones hechas por intermediarios. El diseño para descubrir el instrumento de evaluación más deseable establece una criba entre los modelos y su respectiva inclusión de los elementos presentes en las mejores prácticas a nivel global. El análisis procuró revisar todas las evaluaciones de impacto algorítmico en la literatura atingente de los años 2020 y 2021 para recabar las lecciones más significativas de las buenas prácticas de evaluación. Los resultados arrojan la conveniencia de enfocarse en el modelo del riesgo y en seis elementos imprescindibles en las evaluaciones. En las conclusiones se sugieren propuestas para transitar hacia expresiones cuantitativas de los aspectos cualitativos, a la vez que advierten de las dificultades para construir una fórmula estandarizada de evaluación. Se propone establecer cuatro niveles: impactos neutros, riesgos, daños reversibles e irreversibles, así como cuatro acciones de protección: prevención de riesgos, mitigación, reparación y prohibición.
Starting from exemplifying and recognizing the impacts, risks and damages caused by some artificial intelligence systems, and under the argument that the ethics of artificial intelligence and its current legal framework are insufficient, the first objective of this paper is to analyze the models and evaluative practices of algorithmic impacts to astimate which are the most desirable. The second objective is to show what elements algorithmic impact assessments should have. The theoretical basis for the analysis of models, taken from Hacker (2018), starts from showing the discrimination due to lack of guarantees that the input data is representative, complete, and purged of biases, in particular historical bias coming from representations made by intermediaries. The design to discover the most desirable evaluation instrument establishes a screening among models and their respective inclusion of the elements present in the best practices at a global level. The analysis sought to review all algorithmic impact evaluations in the relevant literature at the years 2020 and 2021 to gather the most significant lessons of good evaluation practices. The results show the convenience of focusing on the risk model and six essential elements in evaluations. The conclusions suggest proposals to move towards quantitative expressions of qualitative aspects, while warning of the difficulties in building a standardized evaluation formula. It is proposed to establish four levels: neutral impacts, risks, reversible and irreversible damage, as well as four protection actions: risk prevention, mitigation, repair and prohibition
© 2001-2024 Fundación Dialnet · Todos los derechos reservados