Ayuda
Ir al contenido

Dialnet


Burr Detection Using Image Processing in Milling Workpieces

    1. [1] Universidad de León

      Universidad de León

      León, España

  • Localización: 15th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2020): Burgos, Spain ; September 2020 / coord. por Álvaro Herrero Cosío, Carlos Cambra Baseca, Daniel Urda Muñoz, Javier Sedano Franco, Héctor Quintián Pardo, Emilio Santiago Corchado Rodríguez, 2021, ISBN 978-3-030-57802-2, págs. 751-759
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Manufacturing processes require to satisfy quality standards in the produced parts. In particular, the edge finishing must be burr-free, avoiding that it yields different problems such as wasting time removing them what increases the production cost and time. A burr can be noticed microscopically, but it can contain imperfections or evidence of poor piece design. In order to detect automatically this imperfections and to evaluate the quality of the edge finishing, this paper proposes a complete vision based method using image processing and linear regression. With the calculated function, the slope is isolated and compared to obtain quality assessment thresholds. Results validate the good performance of the proposed method to differenciate three types of burrs.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno