Ayuda
Ir al contenido

Dialnet


Testing Modified Confusion Entropy as Split Criterion for Decision Trees

    1. [1] Universidad del País Vasco/Euskal Herriko Unibertsitatea

      Universidad del País Vasco/Euskal Herriko Unibertsitatea

      Leioa, España

  • Localización: Hybrid Artificial Intelligent Systems. 14th International Conference, HAIS 2019: León, Spain, September 4–6, 2019. Proceedings / coord. por Hilde Pérez García, Lidia Sánchez González, Manuel Castejón Limas, Héctor Quintián Pardo, Emilio Santiago Corchado Rodríguez, 2019, ISBN 978-3-030-29858-6, págs. 3-13
  • Idioma: inglés
  • Enlaces
  • Resumen
    • Confusion Entropy (CEN) has been proposed as a performance measure for classification showing a better discrimination against other metrics. Many works use CEN for other purposes. Recently, an improvement in the definition of CEN has been proposed, a modified CEN (MCEN). The aim of this work is to review a previous work based on a classification tree that uses CEN as a pruning criterion, replacing this criterion with the newly defined MCEN metric.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno