Ayuda
Ir al contenido

Dialnet


On the approximation of rough functions with deep neural networks

  • Autores: Tim De Ryck, Siddhartha Mishra, Deep Ray
  • Localización: SeMA Journal: Boletín de la Sociedad Española de Matemática Aplicada, ISSN-e 2254-3902, ISSN 2254-3902, Vol. 79, Nº. Extra 3, 2022, págs. 399-440
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • The essentially non-oscillatory (ENO) procedure and its variant, the ENO-SR procedure, are very efficient algorithms for interpolating (reconstructing) rough functions. We prove that the ENO (and ENO-SR) procedure are equivalent to deep ReLU neural networks. This demonstrates the ability of deep ReLU neural networks to approximate rough functions to high-order of accuracy. Numerical tests for the resulting trained neural networks show excellent performance for interpolating functions, approximating solutions of nonlinear conservation laws and at data compression.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno