Carlos Alberto Benedetty Torres, Ingrid Rocio Irreño Palomo, Juan de Jesus Martinez Pertuz, Luiz Carlos de Almeida, Leandro Mouta Trautwein, Pablo Augusto Krahl
In this study, the capacity and ultimate behavior of Reinforced Concrete (RC) and Steel Fiber Reinforced Con-crete (SFRC) beams are evaluated. Nonlinear Finite Element Analysis (NLFEA) and the inverse analysis technique were used to model its structural response using the ATENA finite element software. The smeared crack approach, the crack band model, and advanced constitutive models were used to reproduce concrete fracture. The analyzed beams were sub-jected to rupture in a four-point bending test setup. The relationship between the shear span and the depth of the beams was 1.5. Four scenarios were analyzed, RC beams with and without stirrups, and SFRC beams without stirrups with vol-umes of 0.57% and 0.76%. The results obtained in the modeling are discussed in terms of the ability of the models to numerically reproduce the relationships: load versus displacement, load versus strain, crack patterns, and failure modes. The analysis techniques allowed to reproduce the experimental response of the beams with good agreement. They show great potential to solve structural engineering problems.
© 2001-2025 Fundación Dialnet · Todos los derechos reservados