China
China
This study aimed to uncover the microRNA and messenger RNA (miRNA/mRNA) interactions in the pathophysiological process of calcified aortic valve disease (CAVD) of the human aortic valve. RNA sequencing of six selected samples (3 healthy control samples vs. 3 CAVD samples) was performed to obtain mRNA and miRNA sequences, and differential expression (DE) analysis of miRNA and mRNAs was performed. To build a CAVD-specific miRNA-mRNA interactome, the upregulated mRNAs and downregulated miRNAs were selected, followed by the establishment of inverse DE of mRNA-miRNA co-expression network based on Pearson’s correlation coefficient using miRanda in the R language software. Subsequently, pathway enrichment analysis was performed to elucidate CAVD-related pathways that were likely mediated by miRNA regulatory mechanisms. In addition, miRNAs with an mRNA correlation greater than 0.9 in the co-expression network were selected for anti-calcification verification in a CAVD cellular model. We identified 216 mRNAs (99 downregulated and 117 upregulated) and 602 miRNAs (371 downregulated and 231 upregulated) that were differentially expressed between CAVD and healthy aortic valves. After applying Pearson’s correlation toward miRNA-mRNA targets, a regulatory network of 67 miRNAs targeting 76 mRNAs was created. The subsequent pathway enrichment analysis of these targeted mRNAs elucidated that genes within the focal adhesion pathway are likely mediated by miRNA regulatory mechanisms. The selected hsa-miR-629-3p and TAGLN pair exhibited anti-calcification effects on osteogenic differentiation-induced human aortic valve interstitial cells (hVICs). On integrating the miRNA and mRNA sequencing data for healthy aortic valves and those with CAVD, the CAVD-associated miRNA-mRNA interactome and related pathways were elucidated. Additional cell function data demonstrated anti-calcification effects of the selected hsa-miR-629-3p targeting TAGLN, validating that it is a potential therapeutic target for inhibiting CAVD.
© 2001-2024 Fundación Dialnet · Todos los derechos reservados