Ayuda
Ir al contenido

Dialnet


On local edge antimagic chromatic number of graphs

    1. [1] Vellore Institute of Technology.
  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 41, Nº. 6, 2022, págs. 1397-1412
  • Idioma: inglés
  • Enlaces
  • Resumen
    • Let G=(V,E) be a graph of order p and size q having no isolated vertices. A bijection f from V to {1,2,3,...,p} is called a local edge antimagic labeling if  for  any two adjacent edges e=uv and e'=vw of G, we have w(e) is not equal to w (e'), where the edge weight w(e=uv)=f(u)+f(v) and w(e')=f(v)+f(w). A graph G is local edge antimagic if G has a local edge antimagic labeling. The local edge antimagic chromatic number is defined to be the minimum number of colors taken over all colorings of G induced by local edge antimagic labelings of G. In this paper, we determine the local edge antimagic chromatic number for a friendship graph, wheel graph, fan graph, helm graph, flower graph, and closed helm.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno