Jiali An, Dingkun Hou, Lei Wang, Lili Wang, Yuanyuan Yang, Haitao Wang
Background. Prostate cancer is one of the most common malignant tumors of the male genitourinary system. Fibroblast activation protein alpha (FAP-α) overexpression has been shown to occur in a wide range of tumors. However, the specific mechanism of FAP-α in the development of prostate cancer has not been reported.
Methods. In this study, real-time quantitative PCR (qRT-PCR) was used to detect the relative expression of FAP-α mRNA in prostate cancer cell lines (PC-3, LNCaP, and DU145) and human normal prostate epithelial cell line RWPE-1. Small interfering RNA (siRNA) targeting FAP-α and vectors expressing exogenous FAP-α were transfected to prostate cancer cells (LNCaP and DU145) to investigate the function of FAP-α. BALB/c nude mice were injected with DU145 cells which were transfected with NC-siRNA, FAP-αsiRNA-1, or FAP-α-siRNA-2.
Results. Compared to adjacent normal tissues, FAPα protein and mRNA levels in prostate cancer tissues increased significantly (P<0.05). Compared to patients with high FAP-α mRNA levels, patients with low FAP-α mRNA levels had a significantly higher survival rate (χ2=5.050, log-rank P=0.025). Overexpression of FAP-α in LNCaP cells markedly inhibited cell apoptosis, and promoted cell invasion and proliferation. In contrast, knockdown of FAP-α expression in DU145 cells can significantly reduce invasion, proliferation, and promote apoptosis in prostate cancer. Immunofluorescence assay further indicated that down-regulation of FAP-α could suppress the nuclear translocation of β-catenin. An in vivo study found that compared with the NC-siRNA group, the tumor weight and tumor volume in the FAPα-siRNA-1 and FAP-α-siRNA-2 groups were significantly decreased.
Conclusions. In conclusion, down-regulation of FAP-α can inhibit the invasion and proliferation of prostate cancer. Our study provides a theoretical basis for the targeted treatment of prostate cancer.
© 2001-2024 Fundación Dialnet · Todos los derechos reservados