Ayuda
Ir al contenido

Dialnet


Research on Computational Intelligence Algorithm in LTE Channel Estimation

    1. [1] Amity University

      Amity University

      IN.36.141.7279602, India

    2. [2] Kalsekar College of engineering, Mumbai, India
  • Localización: Revista Colombiana de Computación, ISSN 1657-2831, ISSN-e 2539-2115, Vol. 23, Nº. 2, 2022 (Ejemplar dedicado a: Revista Colombiana de Computación (Julio-Diciembre)), pág. 2
  • Idioma: inglés
  • Títulos paralelos:
    • Investigación sobre el algoritmo de inteligencia computacional en la estimación de canales LTE
  • Enlaces
  • Resumen
    • español

      Debido a que el tráfico de datos está creciendo a un ritmo rápido gracias a los avances en el Internet de las Cosas, el modelado preciso y la anticipación exacta del Long-Term Evolution (LTE) es fundamental para una variedad de aplicaciones como el streaming de vídeo, el consumo efectivo de ancho de banda, y la gestión de la energía. En esta investigación, proponemos un modelo basado en un Algoritmo de Inteligencia Computacional (IC) que puede mejorar la Estimación del Canal basado en la señal recibida. Se consideran dos algoritmos. A diferencia de los trabajos anteriores que se centraban únicamente en el diseño de modelos para estimar el canal utilizando los algoritmos tradicionales de Error Cuadrático Medio (MMSE) y de Mínimos Cuadrados (LS), nosotros utilizamos 1) GA (Algoritmo Genético) y 2) PSO (Algoritmo de Optimización de Enjambre de Partículas) para trabajar con datos de prueba de conducción discreta y continua de Long-Term Evolution (LTE). Nos fijamos en LTE en la banda de 5,8 GHz en particular. Al reducir el error cuadrático medio de LS y la complejidad de MMSE, el modelo de diseño intenta mejorar la estimación del canal. Los pilotos se colocan al azar y se envían con los datos para recopilar información sobre el canal, lo que ayuda al receptor a descodificar y estimar el canal mediante LS, MMSE, Taguchi GA y PSO. Se ha estimado la tasa de error de bits (BER), la relación señal/ruido y el error cuadrático medio de un modelo basado en IC. En comparación con los algoritmos MMSE y LS, el modelo BER propuesto alcanza la ganancia objetivo de 2,4 dB y 5,4 dB.

    • English

      Because data traffic is growing at a rapid pace thanks to advancements in the Internet of Things, precise modelling and precisely anticipating Long-Term Evolution (LTE) Channel is critical for a variety of applications like as video streaming, effective bandwidth consumption, and power management. In this research, we propose a model based on a Computational Intelligence (CI) Algorithm that may enhance Channel Estimation based on received signal. Two Algorithms are considered. In contrast to previous work that focused solely on designing models to estimate channel using traditional Minimum Mean Square Error (MMSE) and Least Square (LS) algorithms, we used 1) GA (Genetic Algorithm) and 2) PSO (Particle Swarm Optimization Algorithm) to work on Discrete and Continuous Long-Term Evolution (LTE) drive test data. We're looking at LTE in the 5.8 GHz band in particular. By lowering the mean square error of LS and the complexity of MMSE, the design model attempts to improve channel estimation. Pilots are put at random and sent with data to gather channel information, which aids the receiver in decoding and estimating the channel using LS, MMSE, Taguchi GA, and PSO. The Bit Error Rate (BER), Signal to Noise Ratio, and Mean Square Error of a CI-based model have all been estimated. In comparison to the MMSE and LS algorithms, the proposed model BER achieves the target gain of 2.4 dB and 5.4 dB.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno