San Miguel De Ibarra, Ecuador
El objetivo del trabajo es utilizar la metodología de aprendizaje autónomo como herramienta en la gestión del mantenimiento de vehículos. En la obtención de datos se han simulado fallos en el sistema de alimentación de combustible que provocan anomalías en el proceso de combustión que son fácilmente detectables por vibraciones obtenidas de un sensor en el motor de un tractor agrícola. Para entrenar el algoritmo de clasificación se utilizaron 4 estados del motor: BE (estado óptimo), MEF1, MEF2, MEF3 (fallas simuladas). El aprendizaje autónomo aplicado es del tipo supervisado, donde inicialmente se caracterizó y rotuló las muestras para crear una base de datos para la ejecución del entrenamiento. Los resultados muestran que el entrenamiento realizado dentro del algoritmo de clasificación tiene una eficiencia superior al 90%, lo que indica que el método utilizado es aplicable en la gestión del mantenimiento de vehículos para predecir fallas en el funcionamiento del motor.
The objective of this work is to use the autonomous learning methodology as a tool in vehicle maintenance management. In obtaining data, faults in the fuel supply system have been simulated, causing anomalies in the combustion process that are easily detectable by vibrations obtained from a sensor in the engine of an agricultural tractor. To train the classification algorithm, 4 engine states were used: BE (optimal state), MEF1, MEF2, MEF3 (simulated failures). The applied autonomous learning is of the supervised type, where the samples were initially characterized and labeled to create a database for the execution of the training. The results show that the training carried out within the classification algorithm has an efficiency greater than 90%, which indicates that the method used is applicable in the management of vehicle maintenance to predict failures in engine operation.
© 2001-2024 Fundación Dialnet · Todos los derechos reservados