Ayuda
Ir al contenido

Dialnet


Resumen de Rational reparametrization of odes with radical coefficients

Juan Rafael Sendra Pons, David Sevilla González, Carlos Villarino Cabellos

  • Given an ordinary differential equation F(x, y(x), y0 (x), . . . , yn) (x)) = 0, polynomial in y, y0 , . . . , yn) and whose coefficients are complex radical expressions in x, we analyze whether there exists a rational change of variable x = r(z) such that the new differential equation G(z, Y (z), . . . , Y n) (z)) = 0 where Y (z) = y(r(z)) is algebraic (i.e. its coefficients are rational in z). We describe an algorithm for this purpose, which provides also the inverse transformation, so that the solutions of both ODEs are related. In the particular case y 0 (x) = δ(x) with δ(x) an algebraic radical expression in x, the algorithm outputs a change of variable into a rational integrand.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus