L. M. Lara, R. Rodrigo, G. P. Tozzi, H. Boehnhardt, P. Leisy
Comet Lee (C/1999 H1) was observed on June 6, 1999 when it was at rh = 0.98 AU and $\Delta = 1.195$ AU. The spectrophotometric observations, between 0.6 and 1 μm, were aimed at the detection of the CI(1D) doublet $\lambda \lambda$ 9823/9850 Å. The non-detection of these lines, with a $3 \sigma$ flux upper limit of the order of $4.6 \times 10^{-17}$ $\rm erg\,cm^{-2}\,s^{-1}$, confirms the CO depletion already noted by other authors. Several CN and NH2 emission bands lie in that spectral range, making it possible to derive production rates for both species as ~$ 3.1 \times 10^{26}$ $\rm s^{-1}$ and $1.2 \times 10^{27}$ $\rm s^{-1}$, respectively. The oxygen forbidden line at 6300 Å was used to obtain $Q_{\rm H_2O} = (1.22 \pm 0.7) \times 10^{29}$ $\rm s^{-1}$. Assuming that CN and NH2 are directly produced by HCN and NH3, Comet Lee has a $\rm HCN/H_2O \approx 0.25\%$ and $\rm NH_3/H_2O \approx 1\%$ at rh = 0.98 AU, in reasonable agreement with what has been found in other long-period comets. The structural analysis carried out on cometary images acquired with broad band R Bessel filter clearly displays two pairs of ion rays likely produced by the H2O+ doublet at 6198 and 6200 Å, wavelengths covered by the bandpass filter. Identical features are found in the images acquired with the Gunn i filter. The dust brightness profiles in the east-west direction do not deviate from a $\rho^{-m}$ law (with $0.7 < m \le 1.2$) as expected for a steady state model coma with a constant dust production rate and expanding at constant velocity. The dust production rate, as obtained from the $A f \rho$ parameter, is ~500 cm, which compared with the gas production rate classifies this comet as a dust poor one with relatively high (6.5–11.7) gas-to-dust mass ratio. Analysis of the normalized reflectivity gradient (i.e. continuum color) as a function of ρ indicates a slight reddening of the solid component in the coma at large cometocentric distances, whereas the average dust color within an aperture of 20 000 km, centered at the nucleus, is ~$9\%$ per 1000 Å. Mie scattering computations applied to an ensemble of particles indicate that the dust coma is characterised by a relative broad size distribution with a typical mean size of 1 μm. These grains might be composed of a mixture of silicates and icy material.
© 2001-2024 Fundación Dialnet · Todos los derechos reservados