Ayuda
Ir al contenido

Dialnet


On complete hypersurfaces with negative Ricci curvature in Euclidean spaces

    1. [1] Universidade Federal de São Carlos

      Universidade Federal de São Carlos

      Brasil

    2. [2] Universidade Federal Fluminense

      Universidade Federal Fluminense

      Brasil

  • Localización: Revista matemática iberoamericana, ISSN 0213-2230, Vol. 39, Nº 4, 2023, págs. 1437-1442
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this paper, we prove that if Mn, n≥3, is a complete Riemannian manifold with negative Ricci curvature and f:Mn→Rn+1 is an isometric immersion such that Rn+1\f(M) is an open set that contains balls of arbitrarily large radius, then infM∣A∣=0, where ∣A∣ is the norm of the second fundamental form of the immersion. In particular, an n-dimensional complete Riemannian manifold with negative Ricci curvature bounded away from zero cannot be properly isometrically immersed in a half-space of Rn+1. This gives a partial answer to a question raised by Reilly and Yau.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno