Ayuda
Ir al contenido

Dialnet


Multiple-instance Lasso regularization via embedded instance selection for emotion recognition

  • Autores: J. Caicedo, David A. Cárdenas Peña, Diego Fabian Collazos Huertas, Jorge I. Padilla Buriticá, Germán Albeiro Castaño Duque, Germán Castellanos Domínguez
  • Localización: Understanding the Brain Function and Emotions: 8th International Work-Conference on the Interplay Between Natural and Artificial Computation, IWINAC 2019 Almería, Spain, June 3–7, 2019 Proceedings, Part I / José Manuel Ferrández Vicente (dir. congr.), José Ramón Álvarez Sánchez (dir. congr.), Félix de la Paz López (dir. congr.), Francisco Javier Toledo Moreo (dir. congr.), Hojjat Adeli (dir. congr.), 2019, ISBN 978-3-030-19591-5, págs. 244-251
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Since emotions affect physical and psychologically the health of people, their identification is crucial for understanding human behavior. Despite the several systems developed in this regard, most of them underperform on people with disabilities, their setup is sensitive to noise or non-emotional stimuli.Recent studies consider electroencephalographic (EEG) signals for understanding emotional responses due to reflecting the activity of the central nervous system. However, the non-stationary nature of EEG signals demand elaborated signalprocessing approaches because not all time instants hold information related to the stimulus-response. This work proposes a temporal analysis approach, termed MILRES, based on the Multi-Instance Learning framework that includes a multiple instance Regularization with LASSO penalty and an Embedded instanceSelection. We test MILRES in discriminating two states (high and low) of the valence and arousal emotional dimensions from the DEAP dataset. The proposed approach reaches 84.4% accuracy and 79.5% F1-score for valence, and 81.9%accuracy 67.9% for arousal. Such results evidence that MILRES outperforms other EEG-based emotion recognition approaches from the state-of-the-art, with the additional benefit of identifying the brain areas involved in processing emotions.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno