Ayuda
Ir al contenido

Dialnet


Takens–Bogdanov Bifurcation for a Ratio-Dependent Predation Interaction Involving Prey-Competition and Predator-Age

  • Peng Yang [1]
    1. [1] Northwest Normal University

      Northwest Normal University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 22, Nº 4, 2023
  • Idioma: inglés
  • Enlaces
  • Resumen
    • A large number of articles have been devoted to the study of age-dependent predation interaction. Most of them concentrate on the existence of the solution and the non-trivial periodic solution. The strength of this text is that we mainly investigate the long-time behavior of the solution for a general ratio-dependent predation interaction involving prey-competition and predator-age in the form of an ODE and a PDE.

      Firstly, we prove that there are some variable values such that this ratio-dependent predation interaction has a unique positive equilibrium age profile with Takens–Bogdanov singularity. Secondly, under fit tiny perturbation, the ratio-dependent predation interaction generates the Takens–Bogdanov bifurcation in a small domain of this positive equilibrium age profile.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno