Ayuda
Ir al contenido

Dialnet


Shortcomings of the VSEPR Model for Hypercoordinate Species and Its Presentation in General Chemistry

    1. [1] Hawaii Pacific University

      Hawaii Pacific University

      Estados Unidos

    2. [2] Northern Illinois University

      Northern Illinois University

      Township of DeKalb, Estados Unidos

  • Localización: Journal of chemical education, ISSN 0021-9584, Vol. 100, Nº 9, 2023, págs. 3659-3666
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Valence shell electron pair repulsion theory (VSEPR) as explained in most textbooks predicts that substituents bonded to a central atom in AXnEzc species (A = main-group central atom, X = substituent, E = lone pair on central atom, c = charge) will change their X–A–X angles to bend away from the lone pairs. Exceptions have appeared in the literature, commonly arising from steric repulsions between very large substituents and less commonly from electronic factors such as multiple bonding and bond polarization. We have conducted extensive computational studies of hypercoordinate main-group molecules and ions AXnEzc and AOmXnEzc, where X = halide, and found that VSEPR-based predictions of such bending for those species containing heavier halides are likely incorrect. Indeed, despite the fact that cases where X = F usually conform to the prediction, we find that IOF4–/XeOF4 and IO2F2–/XeO2F2 should not. Calculations of the electron localization function indicate that the root cause of the difference is the migration of lone pairs closer to the central atom. We recommend that presentation of VSEPR in general chemistry and inorganic chemistry textbooks be revisited and provide suggested language incorporating this phenomenon.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno