Rodrigo Hernández Carrillo, Gloria Inés Beltrán Calvo
En los macizos rocosos, la presencia de discontinuidades controla la resistencia de los taludes. Estas incluso controlan la geometría de una falla potencial, lo que se conoce como falla con control cinemático. Por lo tanto, es necesario caracterizar su variabilidad de forma apropiada con el fin evaluar la estabilidad de los taludes en roca. En este trabajo se llevan a cabo análisis de confiabilidad de estabilidad de taludes rocosos. La orientación de las discontinuidades se modeló como una variable aleatoria siguiendo la distribución Fisher, que es rotacionalmente simétrica. Además, se planteó un algoritmo para identificar los mecanismos de falla, que fue adaptado a una propuesta existente para calcular el factor de seguridad de cuñas de roca de forma explícita. El algoritmo define de forma sistemática un arreglo de planos. Luego, verifica la posición del talud dentro que ese arreglo que se asocia al modo de falla. El algoritmo fue validado contra los resultados de un programa comercial para calcular factores de seguridad en cuñas de roca. En ambos casos se obtuvo el mismo resultado. Además, se calculó la probabilidad de falla y la función de probabilidad del factor de seguridad para cuñas removibles. Los análisis de confiabilidad mostraron la importancia de efectuar una caracterización adecuada de la variabilidad en la orientación de las discontinuidades, ya que el parámetro de concentración tuvo una gran probabilidad de falla. Se requiere efectuar un análisis cinemático para definir las cuñas removibles antes de calcular el factor de seguridad, ya que no todas las combinaciones de planos derivan en cuñas potencialmente inestables, lo que reduce la probabilidad de falla. De no efectuarse el análisis, esta se sobreestima. Finalmente, sugerimos ampliar este trabajo empleando distribuciones de probabilidad que no sean rotacionalmente simétricas.
In fractured rock masses, discontinuities control the mechanical response of rock slopes. They even define the geometry of a potential failure, known a kinematically controlled failure. Hence, a proper characterization and description are needed to assess their stability. Accordingly, in this work, a reliability assessment of rock wedges' stability was performed by a Monte Carlo simulation. The orientation of discontinuities was modeled as a random variable that follows the rotationally symmetric Fisher distribution. We developed an algorithm to define the modes of failure based on the orientation of planes, which was articulated within a methodology to compute the factor of safety of rock wedges explicitly. The algorithm systematically defines a set-up of joint planes. Then it verifies the relative location of the slope orientation on that set-up, which is related to the mode of failure of the rock wedge. The proposed algorithm was validated by comparison against commercial software; both yielded the same results. Besides, the probability of failure and the factor of safety probability function of removable wedges were computed for different concentration parameters. Reliability assessment showed the importance of properly characterizing the variability of joint orientation since the concentration highly influences the computed probability of failure. In addition, a proper definition of removable wedges by kinematic analysis is required before computing the factor of safety because many combinations of planes do not lead to unstable wedges, which reduces the probability of failure. Otherwise, it is overestimated. Finally, we recommend further work on rock wedge reliability assessment involving rotational nonsymmetric distribution.
© 2001-2024 Fundación Dialnet · Todos los derechos reservados