Ayuda
Ir al contenido

Dialnet


Using Temporal Information in Deep Learning Architectures to Improve Lane Detection Under Adverse Situations

  • D. Turrado [1] ; J. Koloda [1] ; M. Rincón [1]
    1. [1] UNED, Madrid, Spain
  • Localización: Bio-inspired Systems and Applications: from Robotics to Ambient Intelligence: 9th International Work-Conference on the Interplay Between Natural and Artificial Computation, IWINAC 2022, Puerto de la Cruz, Tenerife, Spain, May 31 – June 3, 2022, Proceedings, Part II / José Manuel Ferrández Vicente (dir. congr.), José Ramón Álvarez Sánchez (dir. congr.), Félix de la Paz López (dir. congr.), Hojjat Adeli (aut.), 2022, ISBN 978-3-031-06527-9, págs. 366-373
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • One of the fundamental challenges in the field of autonomous driving is the ability to detect dynamic objects, such as vehicles or pedestrians, and statics ones, such as lanes, in the surroundings of the vehicle. The accurate perception of the environment under the long tale of driving scenarios is crucial for a safe decision making and motion planning.Mainly, lane detection approaches still function on single-frame basis and do not exploit the (high) temporal correlation of the signals representing the perceived environment. Single-frame detection networks might work well under circumstances where the lanes are perfectly visible, but show a lack of performance under certain situations, like occlusions, shadows, rain, snow, lane degradation, etc. To address the aforementioned problem, this work proves how adding temporal information for lane binary segmentation improves substantially the performance of single-frame architecture under challenging and adverse situations.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno