Ayuda
Ir al contenido

Dialnet


An Efficient and Rotation Invariant Fourier-Based Metric for Assessing the Quality of Images Created by Generative Models

    1. [1] UNED, Madrid, Spain
  • Localización: Bio-inspired Systems and Applications: from Robotics to Ambient Intelligence: 9th International Work-Conference on the Interplay Between Natural and Artificial Computation, IWINAC 2022, Puerto de la Cruz, Tenerife, Spain, May 31 – June 3, 2022, Proceedings, Part II / José Manuel Ferrández Vicente (dir. congr.), José Ramón Álvarez Sánchez (dir. congr.), Félix de la Paz López (dir. congr.), Hojjat Adeli (aut.), 2022, ISBN 978-3-031-06527-9, págs. 413-422
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Recent progress in generative image modeling is leading to a new era of high-resolution fakes visually indistinguishable from real life images. However, the development of metrics capable of discerning whether images are synthetic or not runs behind the race of achieving the best generator, thus bringing potential threats. We propose a rotation invariant metric capable of distinguishing real and generated image datasets and we call it CSD (Circular Spectrum Distance) due to its circular nature and its inherent relation to the Fourier Spectrum. Its performance is analysed on a whole brain MRI dataset. CSD has similar behavior to FID during training but requires smaller batch sizes and is faster to compute.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno