Ayuda
Ir al contenido

Dialnet


Statistics and Causal Inference: a review

  • Autores: Judea Pearl
  • Localización: Test: An Official Journal of the Spanish Society of Statistics and Operations Research, ISSN-e 1863-8260, ISSN 1133-0686, Vol. 12, Nº. 2, 2003, págs. 281-345
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • This paper aims at assisting empirical researchers benefit from recent advances in causal inference. The paper stresses the paradigmatic shifts that must be undertaken in moving from traditional statistical analysis to causal analysis of multivariate data. Special emphasis is placed on the assumptions that underly all causal inferences, the languages used in formulating those assumptions, and the conditional nature of causal claims inferred from nonexperimental studies. These emphases are illustrated through a brief survey of recent results, including the control of confounding, the assessment of causal effects, the interpretation of counterfactuals, and a symbiosis between counterfactual and graphical methods of analysis.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno