Ayuda
Ir al contenido

Dialnet


Learning the model from the data

    1. [1] Universidad de Buenos Aires

      Universidad de Buenos Aires

      Argentina

  • Localización: Revista de la Unión Matemática Argentina, ISSN 0041-6932, ISSN-e 1669-9637, Vol. 66, Nº. 1, 2023, págs. 141-152
  • Idioma: inglés
  • Enlaces
  • Resumen
    • The task of approximating data with a concise model comprising only a few parameters is a key concern in many applications, particularly in signal processing. These models, typically subspaces belonging to a specific class, are carefully chosen based on the data at hand. In this survey, we review the latest research on data approximation using models with few parameters, with a specific emphasis on scenarios where the data is situated in finite-dimensional vector spaces, functional spaces such as L2(Rd), and other general situations. We highlight the invariant properties of these subspace-based models that make them suitable for diverse applications, particularly in the field of image processing.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno