Ayuda
Ir al contenido

Dialnet


Posets for which Verdier duality holds

  • Ko Aoki [1]
    1. [1] Max Planck Institute for Mathematics

      Max Planck Institute for Mathematics

      Kreisfreie Stadt Bonn, Alemania

  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 29, Nº. 5, 2023
  • Idioma: inglés
  • Enlaces
  • Resumen
    • We discuss two known sheaf-cosheaf duality theorems: Curry’s for the face posets of finite regular CW complexes and Lurie’s for compact Hausdorff spaces, i.e., covariant Verdier duality. We provide a uniform formulation for them and prove their generalizations. Our version of the former works over the sphere spectrum and for more general finite posets, which we characterize in terms of the Gorenstein* condition. Our version of the latter says that the stabilization of a proper separated ∞-topos is rigid in the sense of Gaitsgory. As an application, for stratified topological spaces, we clarify the relation between these two duality equivalences.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno