Ayuda
Ir al contenido

Dialnet


The effect of short-term storage temperature on the key headspace volatile compounds observed in Canadian faba bean flour

    1. [1] University of Alberta

      University of Alberta

      Canadá

    2. [2] University of Manitoba

      University of Manitoba

      Canadá

    3. [3] Food Processing Development Centre, Alberta Agriculture and Forestry, Leduc, Canada
  • Localización: Food science and technology international = Ciencia y tecnología de alimentos internacional, ISSN-e 1532-1738, ISSN 1082-0132, Vol. 28, Nº 2, 2022, págs. 135-143
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • The odour emitted from the high-tannin fab bean flour (Vicia faba var. minor), was characterized by headspace solid-phase microextraction/gas chromatography-mass spectrometry (HS-SPME/GC–MS). The relative odour activity value (ROAV) was used to monitor the changes in key volatile compounds in the flour during short-term storage at different temperature conditions. The key flavour compounds of freshly milled flour included hexanal, octanal, nonanal, decanal, 3-methylbutanal, phenyl acetaldehyde, (E)-2-nonenal, 1-hexanol, phenyl ethyl alcohol, 1-octen-3-ol, β-linalool, acetic acid, octanoic acid, and 3-methylbutyric acid; these are oxidative degradation products of unsaturated fatty acids and amino acids. Despite the low lipid content of faba beans, the abundances of aldehydes arising during room temperature storage greatly contributed to the flavour of the flour due to their very low odour thresholds. Two of the key volatiles responsible for beany flavour in flour (hexanal, nonanal) increased greatly after 2 weeks of storage at room temperature or under refrigerated conditions. These volatile oxidation products may arise as a result of enzymatic activity on unsaturated fatty acids, and was seen to be arrested by freezing the flour.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno