In the present study, to enhance removal of quinoline contaminants using natural active component, vanillin was loaded onto the MCM-41 (Mobile Component Material) nanoparticles in a simple way. The product was divided into two parts, which were improved by Copper(I) and Copper(II) salts. Promoted synthetic nanocatalysts (Cu(I)/Van./MCM-41, and Cu(II)/Van./MCM-41) were characterized using X-Ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), Energy-Dispersive X-Ray Spectroscopy (EDS), Mapping, Fourier-Transform Infrared Spectroscopy (FTIR), and BET/BJH (Brunauer-Emmett-Teller (BET) and Barret-Joyner-Halenda (BJH)) techniques. To reach optimal conditions, experimental design was performed using Response Surface Methodology (RSM). The experiments were done with the aid of nanocomposites, in presence of ultraviolet radiation without any auxiliary oxidants. Degradation percentages were measured by an Ultraviolet (UV) spectrophotometer. The products were identified using Gas Chromatography–Mass (GC-Mass) technique, and some mechanisms for quinoline removal were proposed. The results indicated that Cu (I) showed better performance in enhanced removal of quinoline than Cu(II).
© 2001-2024 Fundación Dialnet · Todos los derechos reservados