Ayuda
Ir al contenido

Dialnet


Evaluation of machine learning algorithms and relevant biomarkers for the diagnosis of multiple sclerosis based on optical coherence tomography

    1. [1] Universidad Politécnica de Madrid

      Universidad Politécnica de Madrid

      Madrid, España

  • Localización: CASEIB 2023. Libro de Actas del XLI Congreso Anual de la Sociedad Española de Ingeniería Biomédica: Contribuyendo a la salud basada en valor / coord. por Joaquín Roca González, Dolores Ojados González, Juan Suardíaz Muro, 2023, ISBN 978-84-17853-76-1, págs. 356-359
  • Idioma: inglés
  • Enlaces
  • Resumen
    • Multiple sclerosis (MS) is a prevalent neurodegener- ative disease with significant visual pathway-related symptoms. Optical coherence tomography (OCT) has emerged as a valuable tool, and machine learning (ML) techniques hold promise for MS diagnosis. However, ex- isting studies often lack comprehensive feature exploita- tion and require interpretable model analysis to improve clinical insights and diagnostic criteria. This study evaluates machine learning models for classification of healthy controls and MS patients using a comprehensive set of macular and optic-disc parameters from OCT imaging. The study included a dataset of 77 MS eyes and 54 control eyes, obtained by ophthalmic examination and OCT measurements from Optic Disc and Macular Cube scan protocols of a Cirrus HD-OCT 5000 (Carl Zeiss, Meditec, Dublin, CA, USA). Our results identi- fied 19 features, validated by p-values (p < 0.001), as effective discriminators between MS patients and healthy controls. ...


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno