Ayuda
Ir al contenido

Dialnet


Codon optimization of 1,3-propanediol oxidoreductase expression in Escherichia coli and enzymatic properties

  • Wei Li [1] ; I-Son Ng [2] ; Baishan Fang [2] ; Jincong Yu [1] ; Guangya Zhang [2]
    1. [1] Huaqiao University

      Huaqiao University

      China

    2. [2] Xiamen University

      Xiamen University

      China

  • Localización: Electronic Journal of Biotechnology, ISSN-e 0717-3458, Vol. 14, Nº. 4, 2011, págs. 7-7
  • Idioma: inglés
  • Enlaces
  • Resumen
    • The gene dhaT from Klebsiella pneumoniae encoding 1,3-propanediol oxidoreductase (PDOR) was de novo synthesized by splicing overlap extension polymerase chain reaction (SOE-PCR) primarily according to Escherichia coli’s codon usage, as well as mRNA secondary structure. After optimization, Codon Adaptation Index (CAI) value was improved from 0.75 to 0.83, meanwhile energy of mRNA secondary structure was increased from -400.1 to -86.8 kcal/mol. This synthetic DNA was under control by phage T7 promoter in the expression vector pET-15b and transformed into the E. coli BL21 (DE3) strain. Inducers such as isopropyl β-D-thiogalactoside (IPTG) and lactose were compared by activity at different inducing time. The activity of PDOR after codon optimized was 385.4 ± 3.6 U/mL, which was almost 5-fold higher than wild type (82.3 ± 1.5 U/ml) under the flask culture at 25ºC for 10 hrs. Then his-tagged enzyme was separated by using Ni-IDA column. The favorite environment for enzyme activity was at 5°C and pH 10.0, PDOR showed a certainly stability in potassium carbonate buffer for 2 hrs at diverse temperatures, enzyme activity was significantly improved by Mn2+.

Los metadatos del artículo han sido obtenidos de SciELO Chile

Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno