Ayuda
Ir al contenido

Dialnet


Towards a FAIR Dataset for Spanish Non-Functional Requirements

    1. [1] Universidade de Santiago de Compostela

      Universidade de Santiago de Compostela

      Santiago de Compostela, España

    2. [2] Universidade da Coruña

      Universidade da Coruña

      A Coruña, España

  • Localización: VI Congreso XoveTIC: impulsando el talento científico / coord. por Javier Pereira-Loureiro, Manuel Francisco González Penedo; Manuel Lagos Rodríguez (ed. lit.), Álvaro Leitao Rodríguez (ed. lit.), Tirso Varela Rodeiro (ed. lit.), 2023
  • Idioma: español
  • Enlaces
  • Resumen
    • Supervised Machine Learning algorithms (ML) have enhanced the performance of the automatic non-functional requirements (NFR) classification in the Requirements Engineering domain. However, the lack of public datasets, dealing with imbalanced datasets and reproducibility are current concerns in ML experiments. We conducted a quasi-experiment to generate a dataset of NFR in the Spanish Language, following the FAIR Principles. We collected 109 requirements from an open access repository of the University of A Coru˜ na, and performed a labeling process based in the categories and subcategories of the ISO/IEC 25010 quality model. Using a Fleiss’ Kappa test we obtained a substantial agreement (0.78) at the category level and a moderate agreement (0.48) when the classification is per subcategory supervised Machine Learning algorithms (ML) have enhanced the performance of the automatic non-functional requirements (NFR) classification in the Requirements Engineering domain. However, the lack of public datasets, dealing with imbalanced datasets and reproducibility are current concerns in ML experiments. We conducted a quasi-experiment to generate a dataset of NFR in the Spanish Language, following the FAIR Principles. We collected 109 requirements from an open access repository of the University of A Coruña, and performed a labeling process based in the categories and subcategories of the ISO/IEC 25010 quality model. Using a Fleiss’ Kappa test we obtained a substantial agreement (0.78) at the category level and a moderate agreement (0.48) when the classification is per subcategory


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno