Ayuda
Ir al contenido

Dialnet


Oscillatory fluid flow elicits changes in morphology, cytoskeleton and integrin-associated molecules in MLO-Y4 cells, but not in MC3T3-E1 cells

  • Huiyun Xu [1] ; Jian Zhang [1] ; Jiawei Wu [1] ; Ying Guan [1] ; Yuanyuan Weng [1] ; Peng Shang [1]
    1. [1] Northwestern Polytechnical University School of Life Sciences Key Laboratory for Space Biosciences & Biotechnology
  • Localización: Biological Research, ISSN-e 0717-6287, ISSN 0716-9760, Vol. 45, Nº. 2, 2012, págs. 163-169
  • Idioma: inglés
  • Enlaces
  • Resumen
    • Interstitial fluid flow stress is one of the most important mechanical stimulations of bone cells under physiological conditions. Osteocytes and osteoblasts act as primary mechanosensors within bones, and in vitro are able to respond to fluid shear stress, both morphologically and functionally. However, there is little information about the response of integrin-associated molecules using both osteoblasts and osteocytes. In this study, we investigated the changes in response to 2 hours of oscillatory fluid flow stress in the MLO-Y4 osteocyte-like cell line and the MC3T3-E1 osteoblast-like cell line. MLO-Y4 cells exhibited a significant increase in the expression of integrin-associated molecules, including OPN, CD44, vinculin and integrin avp3. However, there was no or limited increase observed in MC3T3-E1 osteoblast-like cells. Cell area and fiber stress formation were also markedly promoted by fluid flow only in MLO-Y4 cells. But the numbers of processes per cell remain unaffected in both cell lines.

Los metadatos del artículo han sido obtenidos de SciELO Chile

Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno