Jhojan Pool Rojas Quincho, Elvis Anthony Medina Dionicio
RESUMEN La presente investigación tuvo como objetivo evaluar el desempeño del modelo de Redes Neuronales Artificiales (RNA) para pronosticar las concentraciones de PM10 en el aire, para lo cual se hizo un caso estudio para el distrito de Ate, Lima. Para ello se desarrolló distintas arquitecturas de RNA usando como datos de entrada a los registros de contaminantes del aire y variables meteorológicas obtenidas de la Estación de Monitoreo de la Calidad del Aire “ATE” y datos simulados del modelo WRF-CHEM. Las diferentes arquitecturas de RNA pasaron por un proceso de entrenamiento y verificación, y su desempeño se evaluó mediante el Error Cuadrático Medio (ECM), la precisión (BIAS) y el coeficiente de determinación (R2). Se determinó que la arquitectura que tiene un mejor desempeño tuvo 19 neuronas en la capa oculta, con valores de 0,0230 para el ECM, 0,5308 para la BIAS y 0,823 para el R2, asimismo, esta puede brindar pronósticos hasta con 6 horas de antelación. Este estudio puede contribuir a la implementación de Sistemas de Alertas Tempranas (SAT) sobre posibles incrementos en el aire de las concentraciones de PM10.
ABSTRACT The aim of this research was to evaluate the performance of the Artificial Neural Network (ANN) model to predict the concentrations of PM10 in the air, for which a case study was made for the district of Ate, Lima. For this, different ANN architectures were developed using as input data the records of air pollutants and meteorological variables obtained from the Air Quality Monitoring Station "ATE" and simulated data from the WRF-CHEM model. The different ANN architectures went through a training and verification process, and their performance was evaluated using the Mean Square Error (MSE), precision (BIAS) and determination coefficient (R2). It was determined that the architecture that has a better performance had 19 neurons in the hidden layer, with values of 0,0230 for the ECM, 0,5308 for the BIAS and 0,823 for the R2, likewise, it can provide forecasts up to 6 hours in advance. This study can contribute to the implementation of Early Warning Systems (SAT) on possible increases in the air of PM10 concentrations.
© 2001-2025 Fundación Dialnet · Todos los derechos reservados