Ariel Hernán Curiale, Matías Calandrelli, Lucca Dellazoppa, Mariano Trevisán, Jorge Luis Bocian, Juan Pablo Bonifacio, Germán Mato
Introducción: Las técnicas de inteligencia artificial han demostrado tener un gran potencial en el área de la cardiología, especialmente para cuantificar la función cardíaca de ambos ventrículos, volumen, masa y fracción de eyección (FE). Sin embargo, su aplicación en la clínica no es directa, entre otros motivos por la poca reproducibilidad frente a casos de la práctica diaria.
Objetivos: Propuesta y evaluación de una nueva herramienta de inteligencia artificial para cuantificar la función cardíaca de ambos ventrículos (volumen, masa y FE). Estudiar su robustez para su uso en la clínica y analizar los tiempos de cómputo respecto a los métodos convencionales.
Materiales y métodos: Se analizaron en total 189 pacientes, 89 de un centro regional y 100 de un centro público. El método propuesto utiliza dos redes convolucionales incorporando información anatómica del corazón para reducir los errores de clasificación.
Resultados: Se observa una alta concordancia (coeficiente de Pearson) entre la cuantificación manual y la propuesta para cuantificar la función cardíaca (0,98, 0,92, 0,96 y 0,8 para los volúmenes y para la FE de ambos ventrículos) en tiempos cercanos a los 5 seg. por estudio.
Conclusiones: El método propuesto permite cuantificar los volúmenes y función de ambos ventrículos en segundos con una precisión comparable a la de un especialista.
Background: Artificial intelligence techniques have shown great potential in cardiology, especially in quantifying cardiac biventricular function, volume, mass, and ejection fraction (EF). However, its use in clinical practice is not straightforward due to its poor reproducibility with cases from daily practice, among other reasons. Objectives: To validate a new artificial intelligence tool in order to quantify the cardiac biventricular function (volume, mass, and EF). To analyze its robustness in the clinical area, and the computational times compared with conventional methods.
Methods: A total of 189 patients were analyzed: 89 from a regional center and 100 from a public center. The method proposes two convolutional networks that include anatomical information of the heart to reduce classification errors.
Results: A high concordance (Pearson coefficient) was observed between manual quantification and the proposed quantification of cardiac function (0.98, 0.92, 0.96 and 0.8 for volumes and biventricular EF) in about 5 seconds per study. Conclusions: This method quantifies biventricular function and volumes in seconds with an accuracy equivalent to that of a specialist.
© 2001-2025 Fundación Dialnet · Todos los derechos reservados