Zhaowei Lou, Yingnan Sun, Youchao Wu
In this paper, we establish the reducibility of a class of linear coupled quantum harmonic oscillator systems under time quasi-periodic, non-Hamiltonian, reversible perturbations. This essentially means that for most values of the frequency vector, these systems can be reduced to autonomous reversible systems with constant coefficients with respect to time. Our proof relies on an application of Kolmogorov–Arnold–Moser (KAM) theory for infinite dimensional reversible systems.
© 2001-2024 Fundación Dialnet · Todos los derechos reservados