Alma Laura Rodríguez Piña, Enrique Castaño de la Serna, Juan Francisco Jiménez Bremont
The Basidiomycete fungus Ustilago maydis is a biotrophic pathogen of maize. The U. maydis UmRrm75 gene encodes an RNA-binding protein (RBP). In a previous study, we reported that ΔUmRrm75 null mutant strains accumulate H2O2, exhibit slow growth, and have decreased virulence in maize. Herein, we describe UmRrm75 as an ortholog of the ScHrb1, a serine–arginine (SR) protein identified in the yeast Saccharomyces cerevisiae, which plays a role in nuclear quality control, specifically in mRNA splicing and export processes. The yeast ScHrb1 mutant (ΔScHrb1) exhibits an increased sensitivity to elevated levels of boron. We noticed that the ΔScHrb1 displayed sensitivity to H2O2, which is consistent with previous findings in the ΔUmRrm75 mutant. We reversed the sensitivity phenotypes of boron and H2O2 by introducing the UmRrm75 gene into the ΔScHrb1 mutant. Furthermore, we generated complementary strains of U. maydis by expressing UmRrm75-GFP under its native promoter in the ∆UmRrm75 mutants. The UmRrm75-GFP/∆UmRrm75 complementary strains successfully recovered their growth capability under stressors, H2O2 and boron, resembling the parental strains FB2 and AB33. The subcellular localization experiments conducted in U. maydis revealed that the UmRrm75 protein is localized within the nucleus of both yeast and hyphae. The nuclear localization of the UmRrm75 protein remains unaltered even under conditions of heat or oxidative stress. This suggests that UmRrm75 might perform its RBP activity in the nucleus, as previously reported for ScHrb1. Our data contribute to understanding the role of the nuclear RBP UmRrm75 from the corn smut fungus U. maydis.
© 2001-2025 Fundación Dialnet · Todos los derechos reservados