China
The current study examines the (2 + 1)-dimensional fractional Chaffee–Infante (FCI) model, which is a nonlinear evolution equation that characterizes the processes of pattern generation, reaction-diffusion, and nonlinear wave propagation. The construction of analytical solutions involves the use of analytical methods, namely the Khater III and improved Kudryashov schemes. The He’s Variational Iteration method is employed as a numerical approach to validate the accuracy of the obtained solutions.
The main objective of this study is to get novel analytical and numerical solutions for the FCI model, with the intention of gaining a deeper understanding of the system’s dynamics and its possible implications in the fields of fluid mechanics, plasma physics, and optical fiber communications. The study makes a valuable contribution to the area of nonlinear science via the use of innovative analytical and numerical methodologies in the FCI model. This research enhances our comprehension of pattern creation, reaction–diffusion phenomena, and the propagation of nonlinear waves in diverse physical scenarios.
© 2001-2024 Fundación Dialnet · Todos los derechos reservados