Ayuda
Ir al contenido

Dialnet


The Newton polytope and Lorentzian property of chromatic symmetric functions

    1. [1] North Carolina State University

      North Carolina State University

      Township of Raleigh, Estados Unidos

    2. [2] University of Massachusetts System

      University of Massachusetts System

      City of Boston, Estados Unidos

  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 30, Nº. 3, 2024, págs. 1-35
  • Idioma: inglés
  • Enlaces
  • Resumen
    • Chromatic symmetric functions are well-studied symmetric functions in algebraic combinatorics that generalize the chromatic polynomial and are related to Hessenberg varieties and diagonal harmonics. Motivated by the Stanley–Stembridge conjecture, we show that the allowable coloring weights for indifference graphs of Dyck paths are the lattice points of a permutahedronPλ, and we give a formula for the dominant weight λ. Furthermore, we conjecture that such chromatic symmetric functions are Lorentzian, a property introduced by Brändén and Huh as a bridge between discrete convex analysis and concavity properties in combinatorics, and we prove this conjecture for abelian Dyck paths. We extend our results on the Newton polytope to incomparability graphs of (3 + 1)-free posets, and we give a number of conjectures and results stemming from our work, including results on the complexity of computing the coefficients and relations with the ζ map from diagonal harmonics.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno