Ayuda
Ir al contenido

Dialnet


Parabolic recursions for Kazhdan–Lusztig polynomials and the hypercube decomposition

    1. [1] Chinese University of Hong Kong

      Chinese University of Hong Kong

      RAE de Hong Kong (China)

    2. [2] Department of Mathematics, Technion – Israel Institute of Technology, Haifa, Israel
  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 30, Nº. 5, 2024, págs. 1-27
  • Idioma: inglés
  • Enlaces
  • Resumen
    • We employ general parabolic recursion methods to demonstrate the recently devised hypercube formula for Kazhdan-Lusztig polynomials of Sn, and establish its generalization to the full setting of a finite Coxeter system through algebraic proof. We introduce procedures for positive decompositions of q-derived Kazhdan–Lusztig polynomials within this setting, that utilize classical Hecke algebra positivity phenomena of Dyer-Lehrer and Grojnowski–Haiman. This leads to a distinct algorithmic approach to the subject, based on induction from a parabolic subgroup. We propose suitable weak variants of the combinatorial invariance conjecture and verify their validity for permutation groups.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno