Ayuda
Ir al contenido

Dialnet


Resumen de Machine Learning Algorithms for Sex Classification by Using Variables of Orbital Structures: A Computed Tomography Study

Gamze Taskın-Senol, Ibrahim Kürtül, Abdullah Ray, Gülçin Ray

  • español

    RESUMEN: Dado que los algoritmos de aprendizaje automático dan resultados más fiables, en los últimos años han sido utilizados en el campo de la salud. Las variables orbitales dan resultados muy exitosos a la hora de clasificar correctamente el sexo. Esta investigación se ha centrado en la determinación del sexo utilizando determinadas variables obtenidas a partir de las imágenes orbitales de la tomografía computarizada (TC) mediante el uso de algoritmos de aprendizaje automático (AA). En este estudio se probaron 12 variables determinadas en 600 imágenes orbitales de 300 individuos (150 hombres y 150 mujeres) con diferentes AA. Se utilizaron algoritmos de AA de árbol de decisión (DT), K-Nearest Neighbour, regresión logística (RL), Random Forest (RF), análisis discriminante lineal (ADL) y Naive Bayes (NB) para el aprendizaje no supervisado. Los análisis estadísticos de las variables se realizaron con el programa Minitab® 21.2 (64 bits). La tasa de ACC de los algoritmos NB, DT, KNN y RL se encontró en % 83, mientras que la tasa de ACC de los algoritmos ADL y RFC se determinó en % 85. Según el análisis de Sharp, la variable con el mayor grado de efecto se encontró como BOW. El estudio determinó el sexo con alta precisión en las proporciones de 0,83 y 0,85 mediante el uso de las variables de las imágenes de TC orbitales, y se adquirieron los datos morfométricos relacionados de la población en cuestión, enfatizando la variación racial.

  • English

    SUMMARY: Since machine learning algorithms give more reliable results, they have been used in the field of health in recent years. The orbital variables give very successful results in classifying sex correctly. This research has focused on sex determination using certain variables obtained from the orbital images of the computerized tomography (CT) by using machine learning algorithms (ML). In this study 12 variables determined on 600 orbital images of 300 individuals (150 men and 150 women) were tested with different ML. Decision tree (DT), K-Nearest Neighbour (KNN), Logistic Regression (LR), Random Forest (RF), Linear Discriminant Analysis (LDA), and Naive Bayes (NB) algorithms of ML were used for unsupervised learning. Statistical analyses of the variables were conducted with Minitab® 21.2 (64-bit) program. ACC rate of NB, DT, KNN, and LR algorithms was found as % 83 while the ACC rate of LDA and RFC algorithms was determined as % 85. According to Shap analysis, the variable with the highest degree of effect was found as BOW. The study has determined the sex with high accuracy at the ratios of 0.83 and 0.85 through using the variables of the orbital CT images, and the related morphometric data of the population under question was acquired, emphasizing the racial variation.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus