RESUMEN: Los volúmenes medios de las cámaras cardíacas normales en la tomografía computarizada (TC) se utilizan no sólo como criterios clínicos para el diagnóstico de enfermedades cardíacas, sino también como referencia en cardiología. Con el desarrollo de la inteligencia artificial (IA), numerosos datos de TC se pueden analizar y segmentar automáticamente. Este estudio tuvo como objetivo determinar los volúmenes promedio de las cuatro cámaras en corazones adultos sanos y presentar modelos de superficie con el volumen promedio. Se obtuvieron angiografías coronarias por TC de 508 individuos coreanos (330 hombres y 178 mujeres, de 20 a 39 años). Se desarrolló un módulo de segmentación automática para 3D Slicer utilizando aprendizaje automático en Anatomage KoreaTM. Utilizando el módulo, las cuatro cámaras y valvas cardíacas de la TC se segmentaron y reconstruyeron en modelos de superficie. Se produjeron modelos de superficie de las cuatro cámaras de corazones idénticos en la TC utilizando SimplewareTM. Los volúmenes de las estructuras se midieron utilizando Sim4life Light y se analizaron estadísticamente. Después de determinar los volúmenes promedio de las cuatro cámaras, se construyeron modelos de superficie de los volúmenes promedio. En ambas mediciones de software, los volúmenes atriales de las mujeres aumentaron con la edad y los volúmenes ventriculares de los hombres disminuyeron significativamente con la edad. Los volúmenes atrial y ventricular de Simpleware eran mayores y menores que los de Anatomage, respectivamente, debido a errores en Simpleware. En cuanto a la medición de volumen, nuestro módulo desarrollado en este estudio fue más preciso que el Simpleware. Los modelos tridimensionales y de volumen medio utilizados en este estudio se pueden utilizar no solo con fines clínicos, sino también con fines educativos o industriales.
SUMMARY: The average volumes of normal heart chambers in computed tomography (CT) are used not only as clinical criterions for heart disease diagnosis, but also as references in cardiology. With the development of artificial intelligence (AI), numerous CT data can be analyzed and segmented automatically. This study aimed to determine the average volumes of the four chambers in healthy adult hearts and present surface models with the average volume. Coronary CT angiographs of 508 Korean individuals (330 men and 178 women, 20 - 39 years old) were obtained. An automatic segmentation module for 3D Slicer was developed using machine learning in Anatomage KoreaTM. Using the module, the four chambers and heart valves in the CT were segmented and reconstructed into surface models. Surface models of the four chambers of identical hearts in the CT were produced using SimplewareTM. The volumes of structures were measured using Sim4life Light and statistically analyzed. After determining the average volumes of the four chambers, surface models of the average volumes were constructed. In both software measurements, the atrial volumes of females increased with age, and the ventricular volumes of males decreased significantly with age. The atrial and ventricular volumes of Simpleware were larger and smaller than those of Anatomage, respectively, because of errors in the Simpleware. Regarding the volume measurement, our module developed in this study was more accurate than the Simpleware. The average volume and three-dimensional models used in this study can be used not only for clinical purposes, but also for educational or industrial purposes.
© 2001-2024 Fundación Dialnet · Todos los derechos reservados