Ayuda
Ir al contenido

Dialnet


Accelerated Genetic Algorithms with Markov Chains

  • Guan Wang [3] ; Chen Chen [1] ; K.Y. Szeto [2]
    1. [1] Columbia University

      Columbia University

      Estados Unidos

    2. [2] Hong Kong University of Science and Technology

      Hong Kong University of Science and Technology

      RAE de Hong Kong (China)

    3. [3] Universidad de Peking
  • Localización: Nature Inspired Cooperative Strategies for Optimization (NICSO 2010) / coord. por Juan R. González, David Alejandro Pelta Mochcovsky, Carlos Cruz, Germán Terrazas, Natalio Krasnogor, 2010, ISBN 978-3-642-12537-9, págs. 245-254
  • Idioma: inglés
  • Enlaces
  • Resumen
    • Based on the mutation matrix formalism and past statistics of genetic algorithm, a Markov Chain transition probability matrix is introduced to provide a guided search for complex problem optimization. The important input for this guided search is the ranking scheme of the chromosomes. It is found that the effectof mutation using the transition matrix yields faster convergence as well as overall higher fitness in the search for optimal solutions for the 0-1 Knapsack problem, when compared with the mutation-only-genetic-algorithm, which include the traditional genetic algorithm as a special case. The accelerated genetic algorithm withMarkov Chain provides a theoretical basis for further mathematical analysis of evolutionary computation, specifically in the context of adaptive parameter control


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno