Ayuda
Ir al contenido

Dialnet


Adaptive Evolutionary Testing: An Adaptive Approach to Search-Based Test Case Generation for Object-Oriented Software

    1. [1] Instituto Politécnico de Leiria

      Instituto Politécnico de Leiria

      Leiria, Portugal

    2. [2] Universidade de Coimbra

      Universidade de Coimbra

      Coimbra (Sé Nova), Portugal

    3. [3] Universidad de Extremadura

      Universidad de Extremadura

      Badajoz, España

  • Localización: Nature Inspired Cooperative Strategies for Optimization (NICSO 2010) / coord. por Juan R. González, David Alejandro Pelta Mochcovsky, Carlos Cruz, Germán Terrazas, Natalio Krasnogor, 2010, ISBN 978-3-642-12537-9, págs. 185-198
  • Idioma: inglés
  • Enlaces
  • Resumen
    • Adaptive Evolutionary Algorithms are distinguished by their dynamic manipulation of selected parameters during the course of evolving a problem solution; they have an advantage over their static counterparts in that they are more reactive to the unanticipated particulars of the problem. This paper proposes anadaptive strategy for enhancing Genetic Programming-based approaches to automatic test case generation. The main contribution of this study is that of proposing an Adaptive Evolutionary Testing methodology for promoting the introduction ofrelevant instructions into the generated test cases by means of mutation; the instructions from which the algorithm can choose are ranked, with their rankings being updated every generation in accordance to the feedback obtained from the individuals evaluated in the preceding generation. The experimental studies developed show that the adaptive strategy proposed improves the test case generation algorithm’s efficiency considerably, while introducing a negligible computational overhead


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno