Ayuda
Ir al contenido

Dialnet


CO^2RBFN for Short and Medium Term Forecasting of the Extra-Virgin Olive Oil Price

  • M.D. Pérez-Godoy [1] ; P. Pérez-Recuerda [1] ; María Pilar Frías [1] ; A.J. Rivera [1] ; C.J. Carmona [1] ; Manuel Parras [1]
    1. [1] Universidad de Jaén

      Universidad de Jaén

      Jaén, España

  • Localización: Nature Inspired Cooperative Strategies for Optimization (NICSO 2010) / coord. por Juan R. González, David Alejandro Pelta Mochcovsky, Carlos Cruz, Germán Terrazas, Natalio Krasnogor, 2010, ISBN 978-3-642-12537-9, págs. 113-126
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this paper an adaptation of CO2RBFN, evolutionary COoperativeCOmpetitive algorithm for Radial Basis Function Networks design, applied to the prediction of the extra-virgin olive oil price is presented. In this algorithm each individual represents a neuron or Radial Basis Function and the population, the wholenetwork. Individuals compite for survival but must cooperate to built the definite solution. The forecasting of the extra-virgin olive oil price is addressed as a time series forecasting problem. In the experimentation medium-term predictions are obtained for first time with these data. Also short-term predictions with new data arecalculated. The results of CO2RBFN have been compared with the traditional statistic forecasting Auto-Regressive Integrated Moving Average method and other data mining methods such as other neural networks models, a support vector machine method or a fuzzy system.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno