Jaén, España
In this paper an adaptation of CO2RBFN, evolutionary COoperativeCOmpetitive algorithm for Radial Basis Function Networks design, applied to the prediction of the extra-virgin olive oil price is presented. In this algorithm each individual represents a neuron or Radial Basis Function and the population, the wholenetwork. Individuals compite for survival but must cooperate to built the definite solution. The forecasting of the extra-virgin olive oil price is addressed as a time series forecasting problem. In the experimentation medium-term predictions are obtained for first time with these data. Also short-term predictions with new data arecalculated. The results of CO2RBFN have been compared with the traditional statistic forecasting Auto-Regressive Integrated Moving Average method and other data mining methods such as other neural networks models, a support vector machine method or a fuzzy system.
© 2001-2025 Fundación Dialnet · Todos los derechos reservados