Latacunga, Ecuador
Esta investigación responde a la creciente demanda de energías renovables, enfocándose específicamente en los sistemas fotovoltaicos que aprovechan la energía solar como una solución viable y sostenible. La metodología implementada incluyó el análisis de datos de radiación solar recopilados cada hora durante el periodo 2017-2023. Estos datos fueron fundamentales para realizar las predicciones y validar el algoritmo utilizado. El propósito de estas predicciones fue optimizar el dimensionamiento de un sistema fotovoltaico apropiado para un área urbana. Para ello, se empleó un algoritmo de árbol de decisión dentro de la técnica de aprendizaje automático, utilizando el software Python debido a su accesibilidad. Los resultados se almacenaron en un archivo .xlsx, lo que simplificó el proceso de dimensionamiento del sistema. Además, se incorporaron cálculos de desviación estándar para estimar la radiación solar en los próximos tres meses, permitiendo así un cálculo preciso y adecuado del sistema fotovoltaico necesario. En conclusión, el sistema fotovoltaico diseñado se dimensiono eficazmente a partir del análisis predictivo proporcionado por el algoritmo. Con una potencia pico de 1,26 kWp y una configuración de almacenamiento bien adaptada, este sistema está equipado para cumplir con las demandas energéticas diarias de 123,5 kWh.
This research responds to the growing demand for renewable energy, focusing specifically on photovoltaic systems that harness solar energy as a viable and sustainable solution. The methodology implemented included the analysis of hourly solar radiation data collected during the period 2017-2023. These data were fundamental to make predictions and validate the algorithm used. The purpose of these predictions was to optimize the sizing of a photovoltaic system appropriate for an urban area. For this purpose, a decision tree algorithm was employed within the machine learning technique, using Python software due to its accessibility. The results were stored in an .xlsx file, which simplified the system sizing process. In addition, standard deviation calculations were incorporated to estimate the solar radiation over the next three months, thus allowing an accurate and adequate calculation of the required PV system. In conclusion, the designed PV system was efficiently sized based on the predictive analysis provided by the algorithm. With a peak power of 1.26 kWp and a well-adapted storage configuration, this system is equipped to meet the daily energy demands of 123.5 kWh.
© 2001-2025 Fundación Dialnet · Todos los derechos reservados