Ayuda
Ir al contenido

Dialnet


Resumen de Smart hierarchical WiFi localization system for indoors

Noelia Hernández Parra

  • español

    En los últimos años, el número de aplicaciones para smartphones y tablets ha crecido rápidamente. Muchas de estas aplicaciones hacen uso de las capacidades de localización de estos dispositivos. Para poder proporcionar su localización, es necesario identificar la posición del usuario de forma robusta y en tiempo real. Tradicionalmente, esta localización se ha realizado mediante el uso del GPS que proporciona posicionamiento preciso en exteriores. Desafortunadamente, su baja precisión en interiores imposibilita su uso. Para proporcionar localización en interiores se utilizan diferentes tecnologías. Entre ellas, la tecnología WiFi es una de las más usadas debido a sus importantes ventajas tales como la disponibilidad de puntos de acceso WiFi en la mayoría de edificios y que medir la señal WiFi no tiene coste, incluso en redes privadas. Desafortunadamente, también tiene algunas desventajas, ya que en interiores la señal es altamente dependiente de la estructura del edificio por lo que aparecen otros efectos no deseados, como el efecto multicamino o las variaciones de pequeña escala. Además, las redes WiFi están instaladas para maximizar la conectividad sin tener en cuenta su posible uso para localización, por lo que los entornos suelen estar altamente poblados de puntos de acceso, aumentando las interferencias co-canal, que causan variaciones en el nivel de señal recibido. El objetivo de esta tesis es la localización de dispositivos móviles en interiores utilizando como única información el nivel de señal recibido de los puntos de acceso existentes en el entorno. La meta final es desarrollar un sistema de localización WiFi para dispositivos móviles, que pueda ser utilizado en cualquier entorno y por cualquier dispositivo, en tiempo real. Para alcanzar este objetivo, se propone un sistema de localización jerárquico basado en clasificadores borrosos que realizará la localización en entornos descritos topológicamente. Este sistema proporcionará una localización robusta en diferentes escenarios, prestando especial atención a los entornos grandes. Para ello, el sistema diseñado crea una partición jerárquica del entorno usando K-Means. Después, el sistema de localización se entrena utilizando diferentes algoritmos de clasificación supervisada para localizar las nuevas medidas WiFi. Finalmente, se ha diseñado un sistema probabilístico para seguir la posición del dispositivo en movimiento utilizando un filtro Bayesiano. Este sistema se ha probado en un entorno real, con varias plantas, obteniendo un error medio total por debajo de los 3 metros.

  • English

    Recent years have seen a rapid growth of smartphone and tablet applications. Many of these applications make use of the localization capabilities of these devices in what are called Location Based Services. To be able to provide this kind of services, a reliable and real time identification of the user location is needed. Traditionally, global localization has been carried out through GPS, which provides accurate localization when working outdoors. Unfortunately, the use of GPS is affected by Non-Line-Of-Sight, making GPS localization in indoor environments not suitable. Different technologies are being used to provide indoor localization, among them, WiFi is a common choice due to its important advantages: there are WiFi access points in most buildings and measuring WiFi signal is free of charge even for private WiFi networks. Unfortunately, it also has some disadvantages: when working indoors the signal strength is strongly dependent on the building structure and some other nondesired effects appear, such as the multipath effect, signal absorption and the small scale variations. Moreover, since WiFi networks are deployed with the goal of maximizing connectivity and disregarding localization tasks, there are usually many access points distributed over the environment increasing the so-called co-channel interferences, which cause high variations in the received signal strength from the access points. The goal of this thesis is the localization of mobile devices in indoor environments using as the only available information the signal received from the already existing access points in the environment. Since WiFi is pre-installed in most of the buildings, there is no need to either modify the environment or add new devices to it. Then, the final research objective is to achieve robust WiFi real-time localization for mobile devices, available to be deployed in any environment and to be used by any device. To achieve this objective, a hierarchical fuzzy-based approach is proposed to perform localization in topologically described environments. This new approach is able to deal with multi-floor large environments that have been previously neglected in the literature. To do so, the system creates a hierarchical partition of the environment using similarity clues in a K-Means-based approach. Then, the localization system is trained using different supervised learning algorithms to classify the new WiFi samples through the hierarchical tree of the environment partition. Finally, a Bayesian filter to track the position of a device in motion has been designed. This approach was tested in a multi-floor real environment, obtaining an overall mean error distance under 3 metres.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus