Ayuda
Ir al contenido

Dialnet


Desarrollo y optimización de 'green composites' basados en matrices derivadas de aceites vegetales modificados y refuerzos de fibras minerales

  • Autores: María Dolores Samper Madrigal
  • Directores de la Tesis: Rafael Balart Gimeno (dir. tes.), Lourdes Sánchez Nácher (dir. tes.)
  • Lectura: En la Universitat Politècnica de València ( España ) en 2015
  • Idioma: español
  • Tribunal Calificador de la Tesis: María Dolores Salvador Moyá (presid.), Luigi Torre (secret.), Elena Fortunati (voc.)
  • Materias:
  • Enlaces
    • Tesis en acceso abierto en: RiuNet
  • Resumen
    • En los últimos años ha aumentado la sensibilidad de la sociedad ante la conservación del medio ambiente, lo que ha llevado al desarrollo de materiales poliméricos derivados de recursos renovables. Estos nuevos materiales poliméricos presentan propiedades tales que pueden usarse para el desarrollo de `green composites'. El principal objetivo de esta tesis doctoral es el desarrollo y optimización de `green composites', utilizando matrices derivadas de aceites vegetales epoxidados y fibras minerales, que presentan propiedades similares a las fibras de vidrio. Las matrices utilizadas se basan en aceite de linaza epoxidado (ELO) y aceite de soja epoxidado (ESBO), y se han utilizado dos tipos de agentes entrecruzantes. Uno es una mezcla de anhídrido ftálico (PA), 23,8 % en peso, y anhídrido maleico (MA), 76,2 % en peso, que presenta una transformación eutéctica al porcentaje dado y cuya temperatura de fusión ocurre a 48,3 ºC. El otro agente entrecruzante utilizado es anhídrido metil nádico (MNA) que es líquido a temperatura ambiente. Los materiales termoestables obtenidos ponen de manifiesto que el agente entrecruzante MNA proporciona materiales con mejores propiedades mecánicas y termomecánicas que los obtenidos con la mezcla de PA/MA. A partir de las resinas basadas en ELO-MNA y ESBO-MNA y fibras de basalto y pizarra, se realiza la evaluación de la entrecara de los composites mediante el test de fragmentación de una sola fibra (SFFT) y posteriormente se realiza y evalúa los materiales compuestos seleccionados. Las fibras de basalto se modifican con dos amino-silano (3-aminopropil)trimetoxisilano y [3-(2-aminoetilamino) propil]trimetoxisilano) y dos glicidil-silano trimetoxi[2-(7-oxabiciclo[4.1.0]hept-3-il)etil]silano y (3-glicidiloxipropil) trimetoxisilano. El SFFT determina que el esfuerzo cortante en la entrecara, de las fibras de basalto y las matrices ELO-MNA y ESBO-MNA, es más elevado con las fibras tratadas con el amino-silano [3-(2-aminoetilamino)propil]trimetoxisilano y con el glicidil-silano trimetoxi[2-(7-oxabiciclo[4.1.0]hept-3-il)etil]silano con ambas matrices. Debido a los resultados obtenidos con la técnica SFFT se realizan materiales compuestos utilizando tejidos de basalto modificados con los silanos [3-(2-aminoetilamino)propil]trimetoxisilano y trimetoxi[2-(7-oxabiciclo[4.1.0] hept-3-il)etil]silano. De esta forma se obtienen materiales compuestos con buenas propiedades mecánicas y se valida la técnica SFFT, ya que el material compuesto con mejores propiedades es realizado con los tejidos de basalto modificado con ([trimetoxi[2-(7-oxabiciclo[4.1.0]hept-3-il)etil]silano, tal y como se predijo con la técnica SFFT. Las fibras de pizarra fueron tratadas con un amino-silano ([3-(2-aminoetilamino)propil]trimetoxisilano), un glicidil-silano trimetoxi[2-(7-oxabiciclo [4.1.0]hept-3-il)etil]silano, un zirconato (zirconio(IV)bis(dietilcitrato)dipropóxido) y un titanato (titanio(IV)(trietanolaminato)isopropóxido y se seleccionó como matriz ELO-MNA debido a sus buenas propiedades mecánicas. La caracterización mecánica de los composites realizados con tejidos de pizarra reveló que los mejores resultados se obtienen utilizando los agentes de acoplamiento glicidil-silano y titanato. El `green composite¿ que presenta las mejores propiedades mecánicas es el realizado con fibra de pizarra modificada con trimetoxi[2-(7-oxabiciclo[4.1.0]hept-3-il)etil]silano y la resina ELO-MNA. Este material presenta una resistencia a flexión de 402,1 MPa, un módulo a flexión de 19,7 GPa, la resistencia a tracción es de 359,1 MPa y el Módulo de Young es de 25,6 GPa. Las buenas propiedades resistentes que presenta le permite poder sustituir a composites tradicionales realizados con fibra de vidrio.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno