Ayuda
Ir al contenido

Dialnet


Resumen de Mixturas de distribuciones.: Modelización de experiencias con asimetría en los datos.

Nieves Atienza Martínez

  • En este trabajo se propone un modelo de mixturas mixtas de tres componentes, pertenecientes a las familias de distribuciones lognormal, Gramma y Weibull, para ajustar variables que presentan distribuciones con asimetría positiva.

    SE aborda la cuestión de identicabilidad del modelo a través del estudio de la identificabilidad de la clase de mixturas finitas generada a partir de la unión de las tres familias, proporcionando una nueva condición suficiente de identificabilidad.

    Se estudian las propiedades de los EMV de los parámetros del modelo presentando resultado que permiten verificar las condiciones dadas por Recher y Walker (1984) en mixturas finitas generadas a partir de uniones de familias exponenciales y de uniones de una nueva clase de familais, las familias denominadas tipo N.

    Por último, se aborda el problema del cálculo de dichos estimadores a partir del algorítmo EM, presentando como ilustración de la metodología una aplicación para la variables estancia hospitalaria.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus