En la industria conservera existen diferentes métodos de dosificación de aditivo alimentario, siendo el más extendido el basado en líquido de gobierno, que consiste en verter una cascada de agua que aporta disuelto el aditivo. Este método es una técnica imprecisa en lo que a exactitud de la dosis se refiere, suele aportar impurezas dada la recirculación del líquido de gobierno y es agresiva con la maquinaria al mismo que tiempo que no es respetuosa con el medio ambiente.
De este modo, surge como alternativa la dosificación automática de aditivo alimentario comprimido. Es un método de dosificación en seco preciso, limpio y eficaz, ya que los comprimidos siempre poseen la misma concentración de aditivo y no genera residuo. La complejidad del método reside, por un lado, en la compactación de las mezclas de aditivo y, por otro, en la propia dosificación ya que hay que conseguir una dosificación continuada y que respete la integridad de los comprimidos. Es por ello que surge esta tesis doctoral, para optimizar los requisitos de diseño del sistema dosificador, alcanzando un valor umbral de velocidad de serialización en comprimidos por minuto minimizando el grado de desgaste de los comprimidos. Para ello, se estudian diferentes configuraciones de funcionamiento del dispositivo, como son la variación de la inclinación del ángulo del depósito almacén, el cual alberga los comprimidos, y la velocidad de rotación de los álabes del sistema serializador de salida, que genera una hilera de comprimidos para su posterior deposición en una línea de envasado de botes de conserva.
En el desarrollo de la presente tesis y para la consecución de los objetivos planteados en la misma, se emplea el método de los elementos discretos (DISCRETE ELEMENT METHOD, DEM) en la representación y simulación de los sistemas que componen la dosificación, ya que es una herramienta que reduce a nivel de partículas los sólidos granulares o particulados para estudiar su dinámica y permite entender como un conjunto el sistema complejo que forman las partículas como elementos distintos a la par que conocer el movimiento e interacciones de las partículas.
Como punto de partida de las investigaciones llevadas a cabo, se obtienen diferentes modelos de comprimido de aditivo alimentario, compuesto por sal, en estado granular mediante compresión confinada, y se realizan diferentes baterías de simulaciones con diferentes tamaños de partícula con el objeto de estudiar los diferentes parámetros y variables físicas que interactúan en el proceso. Este proceso requiere definir las condiciones de simulación, así como interacciones entre partículas y modelos de contacto, con el fin de generar los enlaces entre partículas necesarios para que haya una cohesión de las mismas y conformen un comprimido homogéneo. Además, se estudian las fuerzas que intervienen en el proceso para determinar la bondad de los modelos junto con el número de enlaces que se generan en función del número de partículas y el radio de las mismas. Posteriormente, estos modelos de comprimido se incluyen en el sistema dosificador mencionado para su posterior análisis y validación.
El efecto de la velocidad de serialización y el desgaste de los comprimidos se estudia en armonía con los diferentes modelos de comprimido generados, con el objetivo de ver su comportamiento, estudiar las fuerzas que sufren las partículas y la velocidad de serialización que se alcanza, para determinar cuál es la mejor combinación de variables y modelos de comprimido elegidos.
Asimismo, se realiza la modificación de la geometría de los álabes serializadores testeando varias formas para tratar de identificar cual es la más respetuosa con la integridad de los comprimidos manteniendo los mismos criterios de dosificación.
There are different methods of food additive dosage in the food industry, being the most widespread the one based on liquid form, which consisting in the spill of a water cascade bringing the additive dissolved. This method is an imprecise technique as far as dose accuracy is concerned, it usually provides spots due to the recirculation of the fluid and it is aggressive with the device mechanical parts while is not respectful with the environment.
In this way, the automatic dosage of compressed additive arises as an alternative in tablet form. It is a precise, clean and effective dry-dossing method, since the tablets always have the same concentration of additive and does not generate any wasted part. This method complexity is found, on one hand, in the food additive mixtures compaction and in the own dossing due to achieve a continuously dosage respecting the tablets in its totality. For this reason, rises this PHD thesis, to optimize the design requirements of this device mainly are the achieving of a dosage rate threshold value in tablets per minute, and minimize the impact of tablet wear away. To do this, different configurations of operation of the device are studied, such as the variation of the inclination angle of the storage tank, which houses the tablets, and the rotation speed of the blades of the serialized output system, which generates a row of tablets for later place them in a packaging line of canned cans.
In the development of this document and for the attainment of the targets lay out, DISCRETE ELEMENT METHOD (DEM) is used for the representation and simulation of the systems which form the dossing, considering it as a tool that reduces to particle level the solids to study its dynamics and it allows to understand like an ensembled complex system formed by the particles as distinct elements at the same time to know the movement and particle interaction.
As the start point of the accomplished research, different models of food additive tablet, composed of salt, are obtained in the granular state by means of confined compression and different simulation batteries are made with various particle sizes to study the different parameters and physical variables that interact in the process. This process needs the simulation conditions are defined, as well as interactions between particles and contact models, to generate the necessary inter-particle bonds for its cohesion and develop a homogenous tablet. Furthermore, the forces involved in the process are analysed to determine the goodness of the models including the number of bonds that are generated as a function of the number of particles and its radius. Subsequently, these tablet models are included in the dosing device system mentioned for further analysis and validation.
The effect of dossing velocity and tablet wearing is studied in harmony with the different models of generated tablet, being the target to see their behaviour, study the forces that suffer the particles and the speed of dosage that is reached, for determining which is the best one variables combination and tablet model chosen.
Also, the geometry of the output blades is modified by testing several ways to try to identify which is the most respectful with the integrity of the tablets, maintaining the same criteria of dosage.
© 2001-2024 Fundación Dialnet · Todos los derechos reservados